fua altezza, o affe, fi avrà la misura dell'una, e l'altra parabola; laonde fi darà ancora la proporzione della parabola F G K alla parabola C D I: ma come la parabola F G K alla parabola C D I, così la D E, larghezza della prima sezione, a G H larghezza della seconda, ed è D E data: dunque sarà data ancora G H.

COROLLARIO III.

Similmente, se in vece della larghezza, o dell' altezza della seconda sezione, si assegnerà la proporzione, che hanno fra loro le medie o massime velocità dell' una, e dell' altra sezione, si darà ancora
l'altezza, e larghezza della seconda sezione; conciossiachè se si faccia,
come il quadrato della velocità della prima sezione al quadrato della
velocità della seconda, così C D, altezza della prima sezione, ad F G,
questa sarà l'altezza della seconda, ritrovata la quale, pel corollario
antecedente, sarà ancora ritrovata la larghezza.

COROLLARIO IV.

Dal progresso della dimostrazione apparisce, che essendo la parabola C D I alla parabola F G K in reciproca proporzione delle larghezze G H, D E; ed essendo la proporzione delle parabole C D I, F G K triplicata di quella, che ha D I a G K; ne segue, che le larghezze sono in reciproca triplicata proporzione delle velocità, e che per conseguenza le medie velocità di diverse sezioni dell'issesso canale orizzontale sono sra loro in proporzione reciproca suttriplicata delle larghezze, ovvero come le radici cubiche delle larghezze reciprocamente.

PROPOSIZIONE VIII.

Dati due carali orizzontali d'una nota altezza, e larghezza, de quali uno influisca nell'altro, ritrovare il ricrescimento dell'altezza, che sarà il canale influente sopra all'altezza dell'altro.

Sia la fezione del canale influente A C d'una nota altezza viva A B, e di la ghezza B C, e la fezione del fecondo recipiente fia D E, di cui la viva altezza cognita fia D F, e la larghezza F E, bifogna ritrova-

Fig 30.