368 MrsuRA dell’Acque correnti tezze delle date lezioni faranno fra loro proporzionali in qualfìvogjia inclinazione . *>3- 47- PROPOSIZIONE IX. Data una fezione di qualche cadente perpendicolare, e la diftanza dal fuo principio, ritrovare le rimanenti fezioni del medefimo. Sia la cadente propofta 1 Q H M, l’afTe della quale fia S X perpendicolare all’orizzonte , ed il principio S, e la data fezione quella, che ha il diametro I M : bifogna ritrovare le rimanenti fezioni I, V, X, ec. Coll’alle S X fi deferiva la femiparabola S A E, e fi facciano le altre cofe, come nella fuperiore Propofizione ; ma come C T ad A B, così fi faccia il quadrato I M al quadrato O F, o il quadrato B M al quadrato T F, e come D V a C T, così il quadrato T F al quadrato V G ; e nel medefimo modo fi trovi X H ec : dico B M, T E, V G, X H efière femidiam-tri delle fezioni B, T, V, X. Imperocché per gli Scoi) figlienti, tutte le fezioni parallele di quaL. che cadente fono fra loro fimili : faranno dunque fra loro come i quadrati de’ femidiametri dal centro. Laonde come il quadrato B M al quadrato T F, cosi la fezione I M alla fazione O' F ; ma come il quadrato B M al quadrato T F, osi reciprocamente la velocità C T alla velocità A B: adunque come la fezione l M alla fezione O F, così la velocità C T deila fezione O F alla velocità A B della fezione I M : feorrerà dunque la ftelfa acqua per la fezione I M, che per la fezione O F. E nello iteflò modo fi dimoflrerà per le fezioni P G, Q. H ec. fcorrerc la llcffa quantità d’acqua, e in confeguenza le lezioni P G, Q H eiTere le fezioni del cadente ricercate. SCOLIO I. B:nché il cadente perpendicolare di fua natura dovefle aver la forma di corpo conico, la baie del quale fia la prima fezione, di qual figura ella fi foife , e la cima il centro comune di tutti i gravi, il q-ia-le con tutto ciò in gran diilinza infenfibilme.ite differirebbe dal cilindro j ma però perchè per l’accrefcimento della velocità le gocciole deli’ac-